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Abstract. Recent STM measurements have revealed the existence of periodic charge modulations at the
surface of certain cuprate superconductors. Here we show that the observed patterns are compatible with
the formation of a three-dimensional crystal of doped holes, with space correlations extending between
different Cu-O layers. This puts severe constraints on the dynamical stability of the crystallised hole
structure, resulting in a close relationship between the periodicity of the electronic modulation and the
interlayer distance.

PACS. 74.72.-h Cuprate superconductors (high-Tc and insulating parent compounds) – 71.30.+h Metal-
insulator transitions and other electronic transitions – 71.38.-k Polarons and electron-phonon interactions

Since the discovery of high temperature superconductiv-
ity, several microscopic models have been proposed in or-
der to explain the complex phase diagram of the cuprates.
In particular, the presence of an antiferromagnetic phase
in the parent compounds has led to a huge theoretical
effort on models with local electronic interactions, such
as the Hubbard or t-J models. It is seldom realised that,
when few carriers are added to an insulating system by
doping, the long range part of the Coulomb repulsion is
not screened, and can not be neglected a priori.

Interest in the long range interactions has been re-
cently revived by the observation, by scanning tun-
neling microscopy, of periodic modulations of the
electronic density of states at the surface of the
cuprate compounds Bi2Sr2CaCu2O8+δ (Bi-2212) [1–8]
and Ca2−xNaxCuO2Cl2 (Na-CCOC) [9]. Although some
of the features have been interpreted in terms of quasi-
particle interference effects, the emergence of mod-
ulations with a dispersionless ordering vector q �
2π/4a0 directed along the Cu-O bonds, strongly points
to the existence of an underlying charge order, char-
acteristic of the less conducting (pseudogap) regions.
Among other possibilities, the latter could be ascribed
to the formation of a Wigner crystal [10] of holes
[9, 11–15] — an insulating ordered state arising in elec-
tronic systems at low density, when the long-range
Coulomb interactions are dominant — or to the ordering
of hole pairs [16–19].

The aim of this work is to determine if the concept of
hole crystallisation is compatible with the experimental
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observations in the cuprates. It is clear that a complete
microscopic treatment of the problem should consider, in
addition to the aforementioned long range Coulomb re-
pulsion, also the interaction of the doped holes with all
the degrees of freedom of the host material, including the
1 − x localised electrons in the Mott insulator, the ions
of the host lattice, chemical impurities, etc... Instead of
attempting this formidable task, or choosing to rely on a
definite microscopic model, we shall approach the prob-
lem starting from the experimental observation that the
holes are localised in an ordered pattern, and describe the
system in the framework of a phenomenological Lorentz
model. As we will show, a great insight into the prob-
lem can be gained already at this phenomenological level,
leading to precise constraints on the admissible shape and
periodicity of the charge ordering patterns.

Let us consider the holes to be located at the sites Ri

of a three-dimensional Bravais lattice. This is a sensible
assumption because, despite the structural constraints in
the cuprates, which confine the carrier motion into Cu-O
layers, the long range Coulomb interactions are isotropic,
so that the ordering within a Cu-O layer is certainly af-
fected by the positions of the holes on different layers.
Allowing for small (inplane) displacements Ri → Ri + ui

around the equilibrium positions leads to the following
quadratic Hamiltonian:

HI =
∑

i

Hi +
1

2ε∞

∑

i�=j

uα
i Iαβ

ij uβ
j +

∑

i

1
2
mω2

0u
2
i . (1)

The first term on the right represents all the static long-
range Coulomb interaction effects, including the Madelung
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Fig. 1. The anisotropic crystal structures considered in the
text: a) single layer compounds (d is the interlayer spacing, a
is the hole-hole distance within a layer); b) bilayer compounds
(l is the distance between neighbouring layers).

energy of the Bravais lattice, plus the restoring poten-
tials acting at each Ri, due to the repulsion of the other
holes localised at Rj �= Ri. The second term is the
usual dipole-dipole interaction arising between particle
oscillations. The indices α, β = x, y are summed, and

Iαβ
ij =

|Rij |2δαβ−3Rα
ijRβ

ij

|Rij |5 . It should be noted that the terms
Hi are screened by the static dielectric constant εs of the
host medium, while the dipolar interactions between fast
hole oscillations are ruled by the high frequency dielectric
constant ε∞. This discrepancy can have important conse-
quences in the cuprates, where εs is substantially larger
than ε∞ owing to the ionic polarisability. The last term
represents the (unknown) potential which, within our phe-
nomenological approach, accounts for the influence of the
host material on the dynamics of the individual holes (in-
teraction with the magnetic, ionic degrees of freedom...).

Let us first consider a “pure” Wigner crystal, which is
obtained by setting ω0 = 0 in the above Hamiltonian [20].
Among the different three-dimensional Bravais lattices
compatible with the structural anisotropy imposed by the
Cu-O layers, we shall deliberately restrict ourselves to the
cases which present a square charge ordering within the
planes, as observed in experiments. Within this subclass,
it can be demonstrated that the body centered tetragonal
(BCT), illustrated in Figure 1a., has the lowest Madelung
energy.

To determine if such anisotropic Wigner crystal is sta-
ble, we now evaluate the frequencies ωkλ (λ = branch
index) of the corresponding collective charge density os-
cillations. The calculation is performed using standard
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Fig. 2. Spectrum of the collective excitations of different
Wigner crystals, for wavevectors k within the plane. Left panel:
the usual body centered cubic (BCC) Wigner lattice (γ = 1).
Center panel: anisotropic BCT lattice with γ = 0.5, which is
unstable against shear, as signaled by the existence of purely
imaginary solutions with ω2

kλ < 0. Right panel: the same
anisotropic lattice embedded in a polarisable medium with
η = ε∞/εs = 0.5. The eigenvalues are expressed in units of
ω2

p = 4πne2/mε∞, m being the hole mass, and n the hole den-
sity. The symmetry points indicated in the graphs are defined
as follows, in units of π/a. Left panel: Γ = (0, 0), H= (2, 0),
N= (1, 1). Centre and right panel: Γ = (0, 0), N= (1 + γ2, 0)
X′ = (1 + γ2, 1 − γ2), X= (1, 1).

Ewald summation techniques, at different values of the
anisotropy ratio γ = a/2d (a being the inplane inter-
particle spacing, determined by the hole concentration,
and d the interlayer distance). The excitation spectra are
reported in Figure 2. In the isotropic case (γ = 1, left
panel), we recover the body centered cubic (BCC) struc-
ture, which is known to be mechanically stable. Generic
BCT crystals are also stable for weak anisotropy ratios
within the range 0.66 < γ < 1.07. Note that this identifies
an interval of hole concentrations, where a square ordering
in the planes arises naturally due to the three-dimensional
character of the Coulomb interactions.

For anisotropy ratios outside the range 0.66 < γ <
1.07, the emergence of imaginary eigenfrequencies (ω2

kλ <
0, see Fig. 2, central panel) signals that the BCT struc-
ture considered here is, in principle, mechanically unsta-
ble, so that the preferred Wigner crystal structure has
a different symmetry. However, energetic differences be-
tween competing structures are expected to be very small,
since Madelung energies are essentially determined by long
range effects. Therefore, it is likely that the observed hole
distributions are influenced by other microscopic mecha-
nisms, such as the commensurability with the Cu-O host
lattice, which justifies our restriction to square planar or-
derings [21].
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Fig. 3. The characteristic energy scale of the trapping po-
tential necessary to stabilise an anisotropic hole crystal, as a
function of the anisotropy ratio γ. Full lines correspond to the
single layer host structure of Na-CCOC, with d = 7.75 Å and
ε∞ = 4.5, at different values of the polarisability ratio (from
left to right, η = 1, 0.8, 0.5, 0.17). The dashed line is for the
bilayer structure of Bi-2212, with ε∞ = 4.9 and η = 0.5. The
system becomes increasingly unstable upon increasing the hole
concentration (i.e. reducing γ). The different periodicities ob-
served in Na-CCOC and in Bi-2212 (indicated by arrows) cor-
respond to a common localisation energy ∼ 0.16 eV, charac-
teristic of the host cuprate materials.

Let us now consider a crystal of holes embedded in a
polarisable medium. In this case, an additional source of
instability appears, causing an overall downward shift of
the excitation spectrum (Fig. 2, right panel). This occurs
because, owing to the ionic polarisability (i.e. as soon as
η = ε∞/εs < 1), the static restoring potentials that lo-
calise the holes, and their mutual dipolar interactions, re-
sponsible for the dispersion of the collective frequencies,
are screened by different dielectric constants. We conclude
that some additional localising mechanism is required to
stabilise a hole crystal in polarisable media such as the
cuprates, and turn our attention to the full Lorentz model
of eq. (1). The collective frequencies Ωkλ in this case can
be derived straightforwardly from the solution of the pure
Coulomb problem as [20]:

Ω2
kλ = ω2

kλ + ω2
0 . (2)

Mechanical stability requires that the eigenfrequencies
Ωkλ are all real. This, according to equation (2), sets a
lower bound on the energy scale of the localising potential:
ω2

0 ≥ ω2
min, where ω2

min is defined as the modulus of the
most negative eigenvalue ω2

kλ over the Brillouin zone. This
quantity is reported in Figure 3 as a function of γ, for dif-
ferent values of the polarisability ratio η. We see that it is
low and flat at large γ (i.e. at low hole concentrations), but
it rises sharply for γ ≈< 0.5, indicating that charge pat-
terns whose inplane periodicity is much shorter than the
interlayer distance are very unlikely to occur, since these
can only be stabilised by invoking an additional localisa-
tion mechanism with a very large energy scale. This gen-
eral observation establishes a direct link between the ad-

missible periodicity of the charge modulations —an elec-
tronic property— and the distance between Cu-O layers
—a structural constraint. To be more specific, using the
appropriate values d = 7.75 Å, a0 = 3.85 Å, ε∞ = 4.5 and
η ≈ 0.5 [22] for Na-CCOC, it can be read directly from
Figure 2 that the observed periodicity a = 4a0 (γ = 1) im-
plies that the characteristic energy scale involved in the
localisation of the holes is (at least) ω0 ≈ 0.16 eV.

If the proposed picture is correct, it should ap-
ply to other cuprates, such as the bismuth based
Bi2Sr2CaCu2O8+δ. These compounds present an addi-
tional constraint related to the bilayer structure, for which
the corresponding lowest energy configuration is illus-
trated in Figure 1b. As in the single layer case, the calcu-
lated excitation spectrum shows that a pure Wigner crys-
tal of holes is unstable due to the ionic polarisability, and
an additional source of localisation must be considered.
Repeating the same arguments as in Na-CCOC, with pa-
rameters d = 15.5 Å, l = 3 Å and dielectric constants
ε∞ = 4.9, η ≈ 0.5 [23], we read from Figure 3 (dashed line)
that the observed periodicities a/a0 = 4.3 − 4.7 [1, 4, 6–8]
(γ = 0.53 − 0.58) are stabilised by taking ω0 = 0.15–
0.17 eV, which is remarkably close to the value obtained
in Na-CCOC. This result strongly points to the existence
of a common localisation mechanism, which could be at
the origin of the different periodicities observed in dif-
ferent compounds. Following the same steps in the case
of the single layer compound Bi2Sr2CuO6, which has a
shorter interlayer distance than Na-CCOC (d = 12.3 Å),
we predict a crystal periodicity a/a0 ≈ 3.4 that would be
interesting to verify experimentally.

Before enquiring about its microscopic foundations, let
us analyse the consequences of the present scenario. First
of all, since ω0 reflects the interaction of individual holes
with the host material, in principle it should not depend
much on the doping level. Here we take it as a constant,
characteristic of the parent cuprate compounds. Accord-
ing to equation (2), in the limit of vanishing hole den-
sity, where all the ωkλ → 0, the excitation spectrum will
be dominated by ω0. Upon increasing the hole concen-
tration, however, the collective frequencies spread away
from ω0 due to the term ω2

kλ, which admits both positive
and negative values. As a consequence, the longitudinal
charge oscillations get hardened upon doping, while trans-
verse oscillations are progressively softened, until a given
eigenfrequency Ωk=kc vanishes, leading to a polarisation
catastrophe at a critical concentration xc [13, 20, 24, 25].
The predicted softening of long wavelength transverse os-
cillations, [13, 25] which is entirely due to the long-range
polarisability of the medium, has been experimentally ob-
served in systematic studies of the optical conductivity
spectra of both electron- and hole-doped cuprates in the
underdoped region [26, 27]. Similar signatures of the po-
larisation catastrophe can be expected in spectroscopic
ellipsometry and electron energy loss spectroscopy.

In the foregoing discussion, we have assumed that all
of the doped holes are crystallised, so that the system is
insulating for x < xc. In this case, the periodicity of the
modulation varies continuously with x until it reaches its
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limiting value a/a0 = (nl/xc)1/2 at the critical concentra-
tion (nl = 1, 2 for single and bilayer host structures) [28].
When further holes are doped into the system beyond xc,
these can not be accommodated in the crystallised state,
which is at the border of an instability. If, as indicated by
experiments, the hole crystal survives for x > xc, one pos-
sibility is that the excess holes settle in the interstitials of
the main ordering pattern, creating a superimposed mod-
ulation, as observed in the Na-CCOC samples [9]. Another
possibility is that the system phase separates into insulat-
ing (crystallised) and conducting regions, as seems to be
the case in Bi-2212 [7]. The question of crystal stability
in the presence of additional mobile charges, and the con-
sequent screening of the long range interactions, remains
open.

Based on the emerging scenario, we can now spec-
ulate on the microscopic mechanism underlying the lo-
calisation of the holes. First of all, the energy scale ω0

identified above is definitely too large to be imputed ex-
clusively to the binding potentials of chemical impurities,
or to the pinning by commensurability effects [29]. On
the other hand, the interaction with the antiferromagnetic
background, which is ruled by typical exchange energies
J ∼ 0.1 eV, would constitute a viable possibility. How-
ever, in strongly polarisable materials, the excess charges
added by doping are expected to form dielectric polarons.
Indeed, it can be recognised that the value of ω0 derived
in this work coincides with the locus of a well defined
absorption band, ubiquitous in the infrared optical spec-
tra σ(ω) of strongly underdoped cuprates, which is gen-
erally ascribed to the formation of polarons [30], suggest-
ing that the additional mechanism required to stabilise
the hole crystal is the polaron self-trapping potential [31].
The Wigner crystallization of polarons in the insulating
phase of the cuprates has been proposed independently
by Remova et al. [11], and Quémerais [12]. The quantum
melting of such polaron crystal has been studied in refer-
ences [13, 25, 32, 33] yielding similar conclusions as in the
present paper.

Our analysis demonstrates that the periodic modula-
tions observed at the surface of the cuprates are compati-
ble with the crystallisation of holes, arising due to the com-
bined effects of the long range Coulomb interactions, and
of some additional localising phenomenon, whose charac-
teristic energy scale is ω0 ∼ 0.16 eV. Although several
microscopic mechanisms can be involved, polaron forma-
tion appears as a good candidate to stabilise a hole crystal
in the cuprates.

The authors thank D. Mayou and B.K. Chakraverty for use-
ful discussions. G.R. acknowledges kind hospitality at LEPES,
Grenoble.
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